手机浏览器扫描二维码访问
世界上好多著名的数学猜想都是从特例论证开始的,所谓‘特例论证’,就是针对特别取值的数字或区域的论证,最开始费马猜想也同样如此。
费马猜想的内容很简单--
当整数n大于2时,关于的方程x的n次方+y的n次方等于z的n次方没有正整数解。
方程中还含有四个未知数,x、y、z是固定的未知数,特例论证一般针对的就是幂值n。
瑞士著名的数学家欧拉是第一个针对费马猜想做论证的人,在写给哥德巴赫的信中,他说证明了n=3时的费马猜想,十三年后其证明发表在《代数指南》一书中,方法是“无限下降法”和形如数系的唯一因子分解定理,这一方法也被后人多次引用。
1816年,巴黎科学院把费马猜想简化归结为n是奇素数(除2以外的所有素数)的情况,也就是说,只要能证明n在取值奇素数的情况,就能够证明费马猜想成立。
后来有很多数学家参与费马猜想的证明,并完成了特例‘n=3’、‘n=5’、‘n=7’,乃至于库默尔利用‘理想素数’改变,证明出的‘对于所有小于100的素指数n,费马大定理成立’。
这是十九世纪费马猜想最重大的突破。
往后的一百五十年时间里,费马猜想都没有再继续突破,直到英国数学家怀尔斯宣布证明了费马猜想。
赵奕在国际数学家大会上,以黎曼猜想挂钩怀尔斯证明逻辑的方式,说明怀尔斯证明过程的逻辑错误。
费马猜想至此又成为了未解之谜。
之前赵奕针对费马猜想思考过很久,发现想要像是怀尔斯一样,进行直接的整体证明非常的困难,而针对n进行特例论证,也很难推进到所有素数。
比如,继续向前推进,证明了n=101的情况下,费马猜想是成立。
这确实是一个进步,但进步的幅度非常小。
针对n=101去证明,也只能说明101的情况,而n的取值是无限多的,就无法证明费马猜想。
“如果是做特例论证,分开论证,为什么不选择变量x、y呢?”
“x、y确实是随机数,但也是有可取之处的。”
赵奕对着稿纸上的费马猜想列式,仔细的思考起来,“如果能证明x、y都为奇素数的情况,也许就能推广到所有的数字。”
“首先还是要证明这个过程。”
他思考着开始动笔了,“假设x、y都是奇素数……”
素数是很神奇的数字。
所有的数字都可以看做的是以素数为基础演化出来的,比如偶数可以看做是两个素数之和,也就是现在的哥德巴赫定理。
同时,任何足够大的奇数,都可以写作是“3+偶数”的形式,也就可以看做是三个素数的和。
“只要证明x、y取值奇素数,也许就能推广到所有的数字。”
“至于2的特例,就很容易讨论了。”
“完善了这个证明,就可以把费马猜想再进行简化……”
……
虽然有了简化费马猜想的思路,但有时候突然产生的想法不一定是正确的,更不一定就能证明出来。
赵奕消耗了大量脑细胞,发现越是思考问题就越复杂,他有点理解为什么怀尔斯的论文,会复杂到有一百多页的证明想真正深入思考。
费马猜想深入的思考下去,真的是非常非常的复杂。
他感觉回到正常生活,还是有时间再去想,也不能因为研究耽误生活。
第二周来了。
《粒子边界理论概述》课程被安排在星期二的晚上,是在理学院楼的大教室进行。
当天赵奕感到有点儿紧张,下午上课都有些心不在焉,总是想着讲课的事情,还针对理好的教案,和钱虹一起做了小小的修正。
在吃过了晚饭后,回到宿舍稍微休息了下,看看时间还有半个小时,他也拿出教案再看看,有点感觉像是面对考试一样。
旁边传来了范雷的提醒声,“赵奕,时间差不多了,准备准备吧!”
...
被师傅捡来的小和尚五岁了,该下山找爸爸了。小和尚软软抱着一只小狼崽,迈着小短腿儿冲过去就抱着自己爸爸的大长腿奶声奶气的喊道爸爸!一声爸爸,喊得五位大佬...
原生家庭的伤害有多大,或是自卑懦弱,毫无自信或是暴力成性,锒铛入狱亦或撕裂婚姻,妻离子散无数次痛彻心扉的感悟后,有的人,用一生来治愈童年有的人,用童年治愈一生。...
他是东临齐王,曾经叱咤沙场的战神,一场战事一个阴谋毁了他的骄傲她是安庆大将之女,一场背叛一场退婚毁了她的声名。一场上位者不怀好意的赐婚把本不该有交集的两个人硬生生凑到了一起,她一心保护好自己,但她只考虑到要怎么在那个男人眼皮底下安然脱身,却从未想过若是在那个男人那里丢了心该怎么办。她知道她无论如何不能替代他心中的那人,她只想他好好的。她倾尽所有的付出好不容易换来他一丝的怜惜,却在另一个女子的算计中一点点被磨光,她的心也在一次一次的伤害中渐渐冷了,之后他更是轻易被人挑唆认定她不衷,她终于心死离开,放两人自由。可总有人不愿放过她,想夺她性命永绝后患,多年后她再次回来时,又会书写怎样的爱恨情仇。...
穿越到了公元1789年的古代日本,时值承平日久的江户时代。开局只有一个下级武士的身份佩刀以及一个只要击败或击杀敌人便能提升个人等级与剑技等级的系统。…...
王者之路张牧简介主角张牧李晴晴穷是一种病,我得了十年的绝症,直到那天我爸出现,让我百病不侵!一个寒门出生,如何才能继承世界第一家族罗斯柴尔德!...