手机浏览器扫描二维码访问
第133章深探等差数列
在经历了梯形中位线和其他数学知识的传授与交流后,戴浩文决定在接下来的讲学中,引领学子们深入探索等差数列这个充满奥秘的数学领域。
这一日,阳光透过窗棂洒在学堂的地面上,戴浩文神色庄重地站在讲台上,看着台下一双双充满求知欲的眼睛,缓缓开口道:“诸位学子,今日我们将进一步深入探究等差数列之妙处。”
学子们纷纷挺直了腰杆,全神贯注地准备聆听戴浩文的讲解。
戴浩文在黑板上写下了一个等差数列的例子:“2,5,8,11,14……”,然后问道:“谁能说一说这个数列的公差是多少?”
一位学子立刻举手回答道:“先生,公差为3。”
戴浩文点了点头,接着问道:“那它的通项公式又该如何表示呢?”
课堂上陷入了短暂的沉默,随后一位聪明的学子站起来说道:“先生,通项公式应为an=a1+(n-1)d,在此例中,a1=2,d=3,所以通项公式为an=2+3(n-1)。”
戴浩文微笑着表示肯定:“不错。那我们来思考一下,如果已知等差数列的第m项和公差,如何求出首项呢?”
学子们纷纷拿起笔,在纸上开始计算和推导。
过了一会儿,一位学子说道:“先生,我觉得可以通过am=a1+(m-1)d这个式子变形求出首项a1。”
戴浩文鼓励道:“很好,那你具体说一说。”
学子接着道:“将式子变形为a1=am-(m-1)d,这样就可以通过第m项和公差求出首项了。”
戴浩文满意地说道:“非常正确。那我们再深入一些,若已知等差数列的前n项和Sn,以及项数n和公差d,如何求首项a1呢?”
这个问题显然更具难度,学子们陷入了深深的思考之中。
这时,一位平时就善于思考的学子站起来说道:“先生,我觉得可以先根据等差数列的前n项和公式Sn=n(a1+an)2,将an用通项公式表示出来,然后代入求解。”
戴浩文眼中露出赞赏之色:“思路很好,那你来给大家详细推导一下。”
学子走到黑板前,开始认真地推导起来:“因为an=a1+(n-1)d,所以Sn=n(a1+a1+(n-1)d)2,化简后得到Sn=n[2a1+(n-1)d]2,进一步变形可得2Sn=n(2a1+(n-1)d),2Sn=2na1+n(n-1)d,2a1=(2Sn-n(n-1)d)n,最终得出a1=(2Sn-n(n-1)d)2n。”
戴浩文带头鼓掌:“推导得非常精彩!那我们再来看一个实际应用的例子。假设一个等差数列的前10项和为150,公差为2,求首项。谁能来解一下?”
学子们纷纷埋头计算,不一会儿,一位学子举手说道:“先生,我算出来了。根据刚才推导的公式,a1=(2×150-10×9×2)20=6。”
戴浩文点了点头:“正确。那我们再思考一下,如果已知等差数列的前三项和为12,且前三项的平方和为40,如何求这个数列的通项公式呢?”
这个问题让学子们感到有些棘手,但他们并没有退缩,而是相互讨论,尝试着寻找解题的方法。
过了许久,一位学子说道:“先生,我设这三项分别为a-d,a,a+d,然后根据已知条件列出方程组,可以求出a和d,进而得到通项公式。”
戴浩文说道:“那你来具体解一下这个方程组。”
学子在黑板上写道:“(a-d)+a+(a+d)=12,(a-d)2+a2+(a+d)2=40。解第一个方程得3a=12,a=4。将a=4代入第二个方程得(4-d)2+16+(4+d)2=40,化简得到16-8d+d2+16+16+8d+d2=40,2d2=40-48,2d2=-8,d2=-4(舍去)或者d=2,d=-2。所以当d=2时,通项公式为an=2+2(n-1)=2n;当d=-2时,通项公式为an=8-2(n-1)=10-2n。”
小主,这个章节后面还有哦,请点击下一页继续阅读,后面更精彩!
戴浩文说道:“解得很好。那我们再来看一个更复杂的问题。已知一个等差数列的前n项和为Sn,且满足Snn是一个等差数列,求这个原数列的通项公式。”
学子们再次陷入沉思,这次讨论的时间更长了。
终于,一位学子说道:“先生,我觉得可以先设Snn的通项公式,然后通过Sn-Sn-1求出原数列的通项公式。”
戴浩文说道:“不错,那你来试试看。”
学子开始推导:“设Snn=bn,则bn=b1+(n-1)c,Sn=n(b1+(n-1)c),当n≥2时,an=Sn-Sn-1=n(b1+(n-1)c)-(n-1)(b1+(n-2)c),化简后得到an=b1+(2n-2)c-(n-1)c=b1+(n-1)c,当n=1时,a1=S1=b1,所以an=b1+(n-1)c。”
不是我目空一切,是你们,还入不了我眼界!我想虎遁山林,可蛋疼地发现,没有一方深林,能放得下我这头猛虎!怎么办?想当咸鱼,可实力它不允许啊...
...
别妄想逃离我,除非我尸骨无存。我是你一个人哒墨临琛掌握京城命脉,凶残冷血,却对病秧子安初眠蚀骨宠爱。传闻这病秧子骨瘦嶙峋,奇丑无比,结果,她惊艳亮相,全民皆痴。安初眠在外腥风血雨搞事情,唯独对墨临琛成了黏人小奶包。当着众人面,墨临琛抱着小奶包,又哄又宠,我老婆身子娇弱,三步一喘,你们都得让着她。养生系统续命,无数神级buff加持,安初眠一搞事就轰动全球。天后马甲被扒,墨临琛看着怀中的安初眠,小奶包,嗯?我摊牌了,除了是你的小奶包外,马甲也遍布全球爱慕者蜂拥而至,豪掷千金。墨爷,你家夫人翻天了!墨临琛磨刀霍霍,敢,她是我的私有物,谁敢多看一眼死!次日,安初眠狐疑的发现,对她众星捧月的爱慕者们,一见到她就闻风丧胆了。...
叮,宿主买不起房,很失败,补偿十亿豪宅。叮,宿主无车步行,挺失败,补偿柯尼塞格一辆。叮,宿主开店失败,补偿繁华商业街。叮,宿主创业失败,补偿万亿科技集团公司。叮,宿主练武失败,补偿宗师级武技外加万斤神力。叮,宿主学医失败,补偿世界第一医技。叮,宿主相亲失败,补偿张豪获得失败万倍补偿系统,不由得默默感叹,原来失败人生也能如此多姿多彩。...
一座古老神秘的灵术学院,一次密谋无情的审判,连接了平凡与神圣,审判使开始食尽人间烟火,而他开始对抗命运之轮开始转动,一个在寻找罪的救赎,一在寻找爱的归属不可思议的旅途,收集七件圣物,英灵殿,黑白国度,雪域谜城魔族,吸血鬼,影子王国,狼王难以置信的身世,不停的追念,寻找的大哥竟是魔族之人,以男人身份活到至今却发现是女人惊天现世的谎言,她不再是原先那个他接二连三的审判,高冷的审判使竟然是两个!红色的那位貌似很...
老婆不给生活费,超级高手只能出门自己打工,于是,猛虎出山,家花野花争颜斗艳,对此,林尘深感无奈,难道我要家中红旗不倒外面彩旗飘飘了么?...