手机浏览器扫描二维码访问
第201章二项式定理的奇妙世界
在学子们对导数的应用有了更深入的理解和熟练掌握之后,戴浩文决定开启新的数学篇章,为他们带来有趣且实用的知识——二项式定理。
新的一天,阳光透过窗户洒进讲堂,戴浩文精神抖擞地站在讲台上,看着充满期待的学子们,微笑着说道:“同学们,今天咱们要一起探索一个新的数学领域——二项式定理。”
他转身在黑板上写下了一个简单的二项式表达式:(a+b)^2。
“大家先回想一下,我们之前学过的乘法运算,(a+b)^2展开应该是什么呢?”戴浩文问道。
学子们纷纷动笔计算,不一会儿,就有声音回答:“是a^2+2ab+b^2。”
戴浩文点点头,接着说:“那如果是(a+b)^3呢?”
这一下,学子们计算的时间稍微长了一些,但最终还是得出了正确的结果:a^3+3a^2b+3ab^2+b^3。
戴浩文笑着说:“不错不错,那大家有没有发现其中的规律呢?”
学子们陷入了沉思,戴浩文见状,开始引导他们:“我们来看每一项的系数,还有a和b的指数,是不是有一定的特点?”
经过一番思考和讨论,有学子举手发言:“先生,系数好像是有一定的排列规律。”
戴浩文赞许地说:“对!这就是我们即将要学习的二项式定理的一部分。接下来,我们正式来学习二项式定理的一般形式。”
他在黑板上写下了二项式定理的公式:(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+C(n,2)a^(n-2)b^2+…+C(n,r)a^(n-r)b^r+…+C(n,n)b^n。
看着学子们一脸疑惑的表情,戴浩文解释道:“这里的C(n,r)叫做组合数,表示从n个元素中选取r个元素的组合数。”
为了让学子们更好地理解组合数,戴浩文又花了一些时间讲解了组合数的计算方法:C(n,r)=n!(r!(n-r)!)。
“那我们来实际计算一下,(a+b)^4展开式是什么。”戴浩文说道。
学子们按照刚刚所学的知识,一步一步地计算着。
“首先,n=4,那么第一项的系数C(4,0)等于1,所以第一项是a^4。第二项C(4,1)等于4,所以是4a^3b。大家继续算下去。”戴浩文在一旁耐心地指导。
经过一番努力,学子们算出了(a+b)^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4。
戴浩文接着说:“那如果我们给定一个具体的数值,比如(1+2)^3,大家能快速算出结果吗?”
学子们纷纷动笔,很快就得出了答案27。
“很好,那我们再来看二项式定理的一些应用。”戴浩文又在黑板上写下了一道题目:“已知(x+1)^5,求展开式中x^3的系数。”
学子们开始思考,有一位学子站起来说:“先生,我们先根据二项式定理展开,找到x^3那一项的系数。”
戴浩文鼓励道:“非常好,那你来试试。”
这位学子走上讲台,边写边说:“C(5,3)=10,所以x^3的系数是10。”
戴浩文点头称赞:“完全正确!那我们再来看这道题。”
他写下:“求(2x-1)^6展开式中的常数项。”
这道题稍微有点难度,学子们纷纷讨论起来。
戴浩文提示道:“大家想想,常数项是哪一项?”
经过一番思考和讨论,有学子回答:“当x的次数为0时,就是常数项。”
戴浩文笑着说:“对,那我们来找找x的次数为0的那一项。”
最终,学子们算出了常数项为1。
戴浩文接着说:“二项式定理在数学中有很多用处,比如可以用来近似计算、证明一些不等式。我们来看这个例子。”
他在黑板上写下:“证明(1+x)^n≥1+nx(当x>-1时,n为正整数)。”
学子们又陷入了思考,戴浩文引导他们用二项式定理展开左边的式子,然后进行比较和证明。
经过一番努力,学子们成功地完成了证明。
“大家做得很棒!那我们再来看看二项式定理在概率问题中的应用。”戴浩文说道。
他举例道:“假设进行n次独立重复试验,每次试验成功的概率为p,失败的概率为1-p。那么恰好成功k次的概率可以用二项式定理来表示。”
不是我目空一切,是你们,还入不了我眼界!我想虎遁山林,可蛋疼地发现,没有一方深林,能放得下我这头猛虎!怎么办?想当咸鱼,可实力它不允许啊...
...
别妄想逃离我,除非我尸骨无存。我是你一个人哒墨临琛掌握京城命脉,凶残冷血,却对病秧子安初眠蚀骨宠爱。传闻这病秧子骨瘦嶙峋,奇丑无比,结果,她惊艳亮相,全民皆痴。安初眠在外腥风血雨搞事情,唯独对墨临琛成了黏人小奶包。当着众人面,墨临琛抱着小奶包,又哄又宠,我老婆身子娇弱,三步一喘,你们都得让着她。养生系统续命,无数神级buff加持,安初眠一搞事就轰动全球。天后马甲被扒,墨临琛看着怀中的安初眠,小奶包,嗯?我摊牌了,除了是你的小奶包外,马甲也遍布全球爱慕者蜂拥而至,豪掷千金。墨爷,你家夫人翻天了!墨临琛磨刀霍霍,敢,她是我的私有物,谁敢多看一眼死!次日,安初眠狐疑的发现,对她众星捧月的爱慕者们,一见到她就闻风丧胆了。...
叮,宿主买不起房,很失败,补偿十亿豪宅。叮,宿主无车步行,挺失败,补偿柯尼塞格一辆。叮,宿主开店失败,补偿繁华商业街。叮,宿主创业失败,补偿万亿科技集团公司。叮,宿主练武失败,补偿宗师级武技外加万斤神力。叮,宿主学医失败,补偿世界第一医技。叮,宿主相亲失败,补偿张豪获得失败万倍补偿系统,不由得默默感叹,原来失败人生也能如此多姿多彩。...
一座古老神秘的灵术学院,一次密谋无情的审判,连接了平凡与神圣,审判使开始食尽人间烟火,而他开始对抗命运之轮开始转动,一个在寻找罪的救赎,一在寻找爱的归属不可思议的旅途,收集七件圣物,英灵殿,黑白国度,雪域谜城魔族,吸血鬼,影子王国,狼王难以置信的身世,不停的追念,寻找的大哥竟是魔族之人,以男人身份活到至今却发现是女人惊天现世的谎言,她不再是原先那个他接二连三的审判,高冷的审判使竟然是两个!红色的那位貌似很...
老婆不给生活费,超级高手只能出门自己打工,于是,猛虎出山,家花野花争颜斗艳,对此,林尘深感无奈,难道我要家中红旗不倒外面彩旗飘飘了么?...