手机浏览器扫描二维码访问
第134章探秘等腰三角形
自等差数列的讲学结束,戴浩文在学堂中的威望更甚。学子们对知识的渴望愈发强烈,而戴浩文也未停下授业解惑的脚步。
新的一日,阳光依旧暖煦,洒入学堂。戴浩文站于讲台之上,目光扫过一众学子,缓缓开口:“诸位,前番我们深入探究了等差数列之妙,今次,吾将引领尔等踏入新的知识领域——等腰三角形。”
学子们闻之,皆正襟危坐,眼神中充满期待。
戴浩文拿起一支白色的粉笔,在黑板上画出一个规整的三角形,其两腰长度相等。“诸位请看,此乃等腰三角形。两腰长度相等之三角形,即为等腰三角形。”
一学子举手问道:“先生,如何判定一个三角形为等腰三角形呢?”
戴浩文微笑着回答:“判定之法有二。其一,若两腰长度相等,则此三角形必为等腰三角形。其二,若两角相等,则其所对之边亦相等,此三角形亦为等腰。”
为使学子们理解更为透彻,戴浩文又在黑板上画出几个三角形,让学子们判别是否为等腰三角形,并阐述理由。
学子们纷纷低头思考,时而在纸上勾勒比划。
少顷,一位学子起身回答:“先生,此三角形两腰等长,定是等腰三角形。”
戴浩文点头称是,又问道:“那此三角形,仅知两角相等,又当如何判断?”
另一学子略作思索后说道:“先生,依您方才所讲,两角相等所对之边相等,此三角形应为等腰。”
戴浩文满意地说道:“善!汝等已初窥门径。”
接着,戴浩文又在黑板上写下“三线合一”四字,问道:“诸位可知此为何意?”
见学子们面露疑惑,戴浩文解释道:“等腰三角形顶角的平分线,底边上的中线,底边上的高相互重合,此乃三线合一。”
为让学子们亲眼目睹这一奇妙特性,戴浩文拿出事先准备好的纸质等腰三角形,沿着顶角平分线折叠,展示给学子们看底边上的中线与高重合之状。
“诸位请看,此线既是顶角平分线,又是底边上的中线与高,此即为三线合一之妙处。”
一学子惊叹道:“先生,此真乃神奇之理!”
戴浩文笑言:“此理不仅神奇,更有诸多实用之处。”
他又在黑板上画出一道与实际生活相关的题目:“今有一木匠,欲制一等腰三角形之木架,已知顶角为80度,求底角之度数。”
学子们纷纷拿起笔计算起来。
片刻后,一位学子起身回答:“先生,底角应为50度。因三角形内角和为180度,顶角80度,两底角相等,故底角为(180-80)÷2=50度。”
戴浩文点头:“不错。那再思此题,若已知一腰长为5尺,底边长为6尺,求底边上的高。”
这下学子们陷入了沉思,纷纷在纸上画图、列式计算。
过了好一会儿,一位聪慧的学子起身说道:“先生,先作底边上的高,将等腰三角形分为两个直角三角形。根据勾股定理,可求出高为4尺。”
戴浩文称赞道:“妙哉!能活学活用,甚善。”
此时,又有学子问道:“先生,这等腰三角形之知识,在生活中还有何用处?”
戴浩文环顾四周,说道:“且看那房屋之顶,有许多呈等腰三角形之状,此乃利用其稳定性。又比如测量河宽,若能巧妙构造等腰三角形,亦可求得。”
说罢,戴浩文在黑板上画出测量河宽的示意图,详细讲解其中原理。
学子们听得津津有味,不时点头。
戴浩文继续出题:“现有一等腰三角形之花坛,周长为20尺,一腰长为8尺,求底边之长。”
学子们再次埋头计算。
一位学子很快得出答案:“先生,底边应为4尺。”
戴浩文微笑着点头,接着又道:“若此等腰三角形一内角为60度,又当如何?”
学子们又陷入思考。
这时,一位平时不太起眼的学子站起来说道:“先生,若有一角为60度,则此三角形为等边三角形,三边皆等。”
戴浩文眼中闪过一丝惊喜:“不错,能由此及彼,思维敏捷!”
随后,戴浩文又列举了许多与等腰三角形相关的实际问题,如建筑设计、农田规划等,让学子们分组讨论,共同求解。
学子们热烈讨论,各抒己见,课堂气氛十分活跃。
问何为大? 答再无可比较者,为大。 问何为道? 答无始无终,无形无名,无边无际,无师无上者为道。 问何为宗? 答...
被女友甩后,周小昆接到了老爸的电话儿子啊,咱家其实有座矿,你是个富二代啊!穷了二十年了,原来自己是个富二代,周小昆不知道是该哭还是该笑...
棺材镇可咒人数代的奇葬白狐盖面腐尸村可使人永生的镇魂棺郪江崖墓所藏可致阴兵之牧鬼箱成都零号防空洞内的阴铁阎王刃开棺人的诡异经历,环环相扣步步惊心,为您揭开中华异文化诡事!...
PS上架后每天万字爆发,欢迎收藏。黑暗与诡秘,阴影与不祥。是谁在背后低语呢喃?恐怖复苏,绝望的故事之种于此生根发芽!我从诡秘中醒来,驾驭故事,化身灾劫。...
元魂世界,玄幻神奇,家族丛生,宗门耸立,强者纷出,高手如云。王牌狙击手王胜穿越到元魂的世界,一头撞上了最不入流的鲤鱼残魂,成了人见人欺的废物。我来是杀人的...
你见过白狗穿衣,老鼠吃猫吗?你听说过纸人唱戏,飞僵吸血吗?来,你听我讲...